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Abstract

Reflection and transmission phenomena of a plane longitudinal displacement wave impinging obliquely at a plane

interface between a micropolar elastic solid half-space and a chiral elastic solid half-space are investigated. The incident

wave is assumed to be striking at the plane interface after propagating through the micropolar elastic solid half-space. The

reflection and transmission coefficients are obtained by utilizing two possible sets of boundary conditions, for a specific

model and there values corresponding to two boundary conditions are also compared graphically. The effect of chirality

parameter on various reflection and transmission coefficients have been noticed and shown graphically. Results of

Lakhtakia et al. [Reflection of elastic plane waves at a planar achiral–chiral interface, Journal of the Acoustical Society of

America 87 (1990) 2314–2318] and Miklowitz [The Theory of Elastic Waves and Waveguides, North-Holland, New York,

1978] have also been reduced as special cases from the present formulation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In a generalized granular solid continuum, the usual displacement field has to be supplemented by a
microrotation field. Such a material is called a micropolar solid or a Cosserat solid, and may possess a negative
Poisson’s ratio [1,2]. An isotropic micropolar solid may be hemitropic [3], i.e., it is isotropic with respect to all
proper orthogonal transformations but not with respect to reflections. Such a material is called mirror
asymmetric or Chiral. Chiral materials, due to lack of geometric symmetry between an object and its mirror
image, have been known in optics as optically active materials. This phenomenon of optical activity in
substances has been known for nearly two centuries and was discovered independently by Arago [4] and Biot
[5,6]. It has been extensively utilized by the physical chemists for characterizing the molecular structure. The
physical phenomenon of chiral materials was first observed in optical spectrum due to the transverse nature of
optical wave [7]. Bose [8] was the first person to develop artificial chiral composite materials. Artificial chiral
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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composites have been proposed and tailored at microwave frequencies for designing broadband
absorbers and filters [8–10]. This gives rise to the idea that the chiral materials may also be applied
in the elastic spectrum for designing broadband absorbers and impedance transformers. To attain this goal,
the constitutive equations [11], and the governing equations [12] for non-centrosymmetric, isotropic
micropolar materials have been proposed to describe the propagation characteristics of elastic waves in
chiral media.

The linear theory for non-centrosymmetric, isotropic (hemitropic) micropolar elastic solids or mechanical
active solids was developed by Kuvshinskii and Aero [13,14], Aero and Kuvshinskii [15], Eringen [16], Lakes
and Benedict [11] and Nowacki [12]. They reported that the continuum is composed of randomly arranged
springs, and hence, the microstructure possesses a screw-like property or a handedness. Such a medium
undergoing a homogeneous deformation can support couple stresses and spin inertia. It is known that an
effective chiral medium can be constructed by the helical arrangement of microstructures, e.g., the structural
chiral inclusions or springs embedded in a host medium [3,17] and therefore, 6 independent wavenumbers are
possible. Two of the wavenumbers represent non-dispersive longitudinal fields, while the remaining 4 are
dispersive circularly polarized transverse fields [18]. The dispersion equations of the transverse fields also
indicate that 2 transition frequencies of the dispersion equation divide the frequency response of the transverse
wavenumbers into 3 varying groups and hence, the 4 transverse modes can only be distinguished in a specified
frequency range [19].

Various researchers [20–22] have discussed the problems of reflection and transmission of plane waves at an
interface between two semi-infinite media in perfect contact. Parfitt and Eringen [23] have discussed the
reflection of plane waves from a flat boundary of micropolar elastic solid half-space. Tomar and Gogna [20,21]
extended the investigations to a longitudinal microrotational wave and a longitudinal displacement wave
impinging at a plane discontinuity between two micropolar elastic solid half-spaces in welded contact.
Lakhtakia et al. [24] and Elphinstone and Lakhtakia [22] have presented the reflection/transmission
phenomena for an incident plane wave propagating towards the achiral–chiral interface. Elphinstone and
Lakhtakia [22] have mentioned that when a linearly polarized plane wave in an isotropic non-chiral medium
encounters an interface with a chiral medium, the refracted plane waves are either longitudinal or transverse
circularly polarized.

In the present paper, we have discussed the reflection/transmission phenomena of a plane longitudinal wave
at a plane interface between a micropolar elastic solid half-space and an elastic chiral solid half-space. The
incident wave is assumed to impinge obliquely through the micropolar elastic solid half-space. The variations
of square of phase speeds of transverse circularly polarized plane waves of chiral medium with the frequency
ratio are shown graphically. The reflection and transmission coefficients are computed using two possible sets
of boundary conditions, for a specific model. The variations of modulus of various reflection and transmission
coefficients with the angle of incidence are presented graphically. We have also shown graphically the effect of
chirality parameter ðC3Þ on various reflection and transmission coefficients. The results of some earlier
researchers are analogous with the limiting cases of the present formulation.
2. Formulation of the problem

Let x; y; z be the Cartesian coordinates. We consider a model consisting of a micropolar elastic solid
half-space and an elastic chiral solid half-space, where both the half-spaces are separated by the plane interface
z ¼ 0. The force stress tensor tij and the couple stress tensor mij for a micropolar elastic solid are given by
(Ref. [25])

tij ¼ luk;kdij þ mðui;j þ uj;iÞ þ Kðuj;i � eijkFkÞ, (1)

mij ¼ aFk;kdij þ bFi;j þ gFj;i, (2)

where l; m; a; b; g and K are the material moduli, eijk is the permutation symbol, dij is the Kronecker delta; ui

and Fi are the displacement and the microrotation vectors, respectively. Here, we have employed the usual
summation convention on the repeated indices.
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Following Eringen [25], the equations of motion in a micropolar elastic solid in the absence of body force
and body couple densities are given by

ðlþ 2mþ KÞrr � u� ðmþ KÞr � r � uþ Kr �U ¼ r€u, (3)

ðaþ bþ gÞrr �U� gr � r�Uþ Kr � u� 2KU ¼ rJ €U, (4)

where r is the density of the medium and J is the micro-inertia.
Introducing the scalar potentials q and x; the vector potentials U and P, as follows:

u � rqþ r�U; U � rxþ r�P; r �P ¼ r �U ¼ 0. (5)

By using (5) into Eqs. (3)–(4), Parfitt and Eringen [23] have shown that there exist four basic waves
propagating with distinct phase speeds in an infinite micropolar elastic solid. They are as follows:

1. A longitudinal displacement wave traveling with phase speed V 1 given by

V2
1 ¼

lþ 2mþ K

r
.

2. A longitudinal microrotational wave propagating with phase speed V2 given as

V2
2 ¼

aþ bþ g
rJð1� OÞ

,

where O ¼ 2o2
0=o

2;o2
0 ¼ K=rJ;o ¼ kV is the circular frequency, k is the wavenumber and V is the phase

speed of the wave. The longitudinal microrotational wave propagates with a speed V 2 with its microrotation
vector in the direction of propagation.

3. Two sets of coupled transverse waves propagating with phase speeds V3;4 given by

V2
3;4 ¼

1

2ð1� OÞ
G�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � 4c24ð1� OÞðc22 þ c23Þ

q� �
,

where the ‘þ’ and ‘�’ signs correspond to V 2
3 and V2

4, respectively, c24 ¼ g=rJ; c22 ¼ m=r, c23 ¼ K=r;G ¼
c24 þ c22ð1� OÞ þ c23ð1� O=2Þ and O is defined earlier. Each set consists of a transverse displacement wave
coupled with a transverse microrotational wave.

Non-centrosymmetric, isotropic micropolar solids can be described by the constitutive equations [11]:

t0ij ¼ l0u0k;kdij þ m0ðu0i;j þ u0j;iÞ þ C3F0j;i, (6)

m0ij ¼ a0F0k;kdij þ b0F0i;j þ g0F0j;i þ C3u
0
j;i � C3eijkF0k, (7)

where u0j and F0j are, respectively, the displacement and the microrotation vectors in an elastic chiral medium;
t0ij is the force stress tensor, m0ij is the couple stress tensor; l0;m0; a0;b0 and g0 are the corresponding elastic
parameters in the chiral medium and C3 is the hemitropic constant.

The elastodynamic equations of an elastic chiral solid with vanished body force and body couple densities,
are governed by (Ref. [12])

ðl0 þ m0Þrr � u0 þ m0r2u0 þ C3r
2U0 ¼ r0 €u0, (8)

ða0 þ b0Þrr �U0 þ g0r2U0 þ 2C3r �U0 þ C3r
2u0 ¼ r0J 0 €U

0
, (9)

where r0 and r0J 0 are, respectively, the mass density and the moment of inertia per unit volume.
Decomposing the vectors u0 and U0 by using the scalar potentials q0 and x0; the vector potentials U0

and P0, respectively, as we decomposed the vectors u and U in (5) and inserting them into Eqs. (8)–(9),
one can obtain the following equations (see Ref. [22]) after substituting the expression of plane harmonic
wave

V 0
4
� ½c0

2
1 þ c0

2
4 þ c0

2
5�V
02 þ ½c0

2
1ðc
02
4 þ c0

2
5Þ � c0

2
6c0

2
7� ¼ 0, (10)

½ðV 0
2
� c0

2
4ÞðV

02 � c0
2
2Þ � c0

2
6c0

2
7�
2k0

2
� ½2c0

2
7ðc
02
2 � V 0

2
Þ�2 ¼ 0. (11)
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where k0 is the wavenumber, c021 ¼ ðl
0
þ 2m0Þ=r0; c022 ¼ m0=r0; c024 ¼ g0=r0J 0; c025 ¼ ða

0 þ b0Þ=r0J 0; c026 ¼ C3=r0 and
c027 ¼ c026=J 0 ¼ C3=r0J 0. Lakhtakia et al. [18] have shown that there exist 6 sets of basic waves traveling with
different phase speeds in an infinite effective chiral medium. They are as follows:

1. Two sets of non-dispersive coupled longitudinal waves (each set consisting of a longitudinal displacement
wave and a longitudinal microrotational wave) traveling with phase speeds V 01 and V 02. The phase speeds of
these coupled longitudinal waves can be obtained from the Eq. (10) and the expressions of square of these
phase speeds are given by

V 0
2
1;2 ¼ G0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02 � c021ðc

02
4 þ c025Þ � c026c

02
7

� �q
; G0 ¼ ðc021 þ c0

2
4 þ c0

2
5Þ=2. (12)

2. Four sets of dispersive-coupled transverse waves (each set consisting of a transverse displacement wave
and a transverse microrotational wave) traveling with phase speeds V 0i ði ¼ 3; 4; 5; 6Þ, where V 02i are the roots
of Eq. (11). Out of these 4 distinct sets of coupled transverse waves, the 2 sets are coupled right circularly
polarized (RCP) waves and the remaining two sets are the coupled left circularly polarized (LCP) waves.

Now, we consider a micropolar elastic solid in the upper half-space designated by the region R1 [zo0] and
an elastic chiral solid in the lower half-space designated by the region R2 [z40]. We consider a train of time
harmonic plane longitudinal displacement wave, i.e., / expðiotÞ, propagating through the micropolar elastic
solid half-space and striking at the interface z ¼ 0 with making an angle y1 with the z-axis. To satisfy the
boundary conditions at the interface, we take the following reflected and transmitted waves into consideration:

Reflected waves: (1) A longitudinal displacement wave traveling with speed V 1 and making an angle y2 with
the normal. (2) Two sets of coupled transverse waves propagating with speeds V3;4 and making angles y3;4,
respectively, with the normal.

Transmitted waves: (1) Two sets of coupled longitudinal waves traveling with speeds V 01;2 and making angles
y01;2, respectively, with the normal. (2) Four sets of coupled transverse waves propagating with phase speeds V 0i
and making angles y0i ði ¼ 3; 4; 5; 6Þ, respectively, with the normal.

The complete geometry of the problem is shown in Fig. 1. We take the following potentials in the region
R1½zo0�:

q ¼ A1 expfik1ðsin y1xþ cos y1zÞ � io1tg þ A2 expfik1ðsin y2x� cos y2zÞ � io1tg, (13)

U ¼
X4
p¼3

Apyêy expfikpðsin ypx� cos ypzÞ � ioptg, (14)
Fig. 1. The geometry of the problem.
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P ¼
X4
p¼3

ðBpxêx þ BpzêzÞ expfikpðsin ypx� cos ypzÞ � ioptg (15)

and the potentials in the region R2 ½z40�,

q0 ¼
X2
p¼1

A0p expfik
0
pðsin y

0
pxþ cos y0pzÞ � io0ptg, (16)

U0 ¼
X6
p¼3

A0pðn
1
pêx þn2

pêy þn3
pêzÞ expfik

0
pðsin y

0
pxþ cos y0pzÞ � io0ptg, (17)

x0 ¼
X2
p¼1

DpA0p expfik
0
pðsin y

0
pxþ cos y0pzÞ � io0ptg, (18)

P0 ¼
X6
p¼3

DpA0pðn
1
pêx þn

2
pêy þn

3
pêzÞ expfik

0
pðsin y

0
pxþ cos y0pzÞ � io0ptg, (19)

where ol ¼ klVl ðl ¼ 1; 3; 4Þ and o0r ¼ k0rV
0
r ðr ¼ 1; 2; . . . ; 6Þ have been defined earlier; êx; êy and êz are the

Cartesian unit vectors; A1 and A2 denote the amplitudes of the incident and the reflected longitudinal
displacement waves, respectively; Ap and Bp ðp ¼ 3; 4Þ are respectively, the amplitudes of the reflected
transverse displacement and the transverse microrotation waves, and A0r ðr ¼ 1; 2; . . . ; 6Þ are the amplitudes of
the respective transmitted waves traveling with phase speeds V 0r. The coefficients Ap and Bp ðp ¼ 3; 4Þ are
related to each other through the relation given by (Ref. [23])

Bp ¼
io2

0Apy

kpðc
2
4 þ 2o2

0k
�2
p � V2

pÞ
ðcos ypêx þ sin ypêzÞ. (20)

The expressions of Dp are given by (Ref. [29])

Dp ¼

r0o02 � k02pðl
0
þ 2m0Þ

k02pC3

; p ¼ 1; 2;

r0o02 � k02pm
0

k02pC3

; p ¼ 3; 4; 5; 6:

8>>>>><
>>>>>:

ð21Þ

When a RCP or LCP plane wave propagates in the xz-plane, the presentation of n
1
p, n

2
p and n

3
p can be

specified as

n1
p : n2

p : n3
p ¼ �i cos y

0
p : 1 : �i sin y

0
p,

where the upper signs ‘þ’ in n
1
p and ‘�’ in n

3
p refer to the RCP plane waves, and the lower signs ‘�’ in n

1
p and

‘þ’ in n
3
p refer to the LCP plane waves.

We have 9 unknown in (13)–(19); so we need 9 linearly independent boundary conditions at the plane
interface z ¼ 0. Classical elasticity theory provides us the following 6 conditions: At z ¼ 0 (see Ref. [26])

u0
ðtrÞ
¼ uðrefÞ þ uðincÞ, (22)

êz � s
0ðtrÞ ¼ êz � ðs

ðrefÞ þ sðincÞÞ. (23)

In addition, the following three boundary conditions on microrotation field are required at z ¼ 0:

U0ðtrÞ ¼ UðrefÞ. (24)

Eqs. (22)–(24) constitute a set (say Set-I) of boundary conditions and are suffice to solve the boundary value
problem. However, there is another set (say Set-II) of boundary conditions possible as well at the interface
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which comprise of the continuity of the normal component of the couple stress, i.e., at z ¼ 0

êz �m
0ðtrÞ ¼ êz � ðm

ðrefÞ þmðincÞÞ, (25)

together with the conditions mentioned in Eqs. (22) and (23).
Since it is well-known that the difference between the micropolar elasticity and that of the classical

elasticity is the introduction of microrotation (U) and couple stress (m). Thus, in a micropolar-chiral
problem, both the microrotation and couple stress are continuous at the interface. It can be seen
that whichever set of boundary conditions is used, a system of 9 equations will be obtained (see
Refs. [22,27]). In the present problem, we have obtained the solution for the unknown using both the
possible sets (Set-I and Set-II) of boundary conditions given by Eqs. (22)–(24) and Eqs. (22), (23) and (25),
respectively.

The potentials given in (13)–(19) will satisfy the Set-I of boundary conditions if kl sin yl ¼ k1 sin y2 ¼
k0r sin y

0
r; ol ¼ o0r ¼ o ðl ¼ 1; 3; 4; r ¼ 1; 2; . . . ; 6Þ and

sin y1k1A1 þ sin y2k1A2 þ
X4
p¼3

cos ypkpApy ¼
X2
p¼1

sin y0pk0pA0p �
X6
p¼3

cos y0pk0pA0p, (26)

X4
p¼3

k0pA0p �
X6
p¼5

k0pA0p ¼ 0, (27)

cos y1k1A1 � cos y2k1A2 þ
X4
p¼3

sin ypkpApy ¼
X2
p¼1

cos y0pk0pA0p þ
X6
p¼3

sin y0pk0pA0p, (28)

ð2mþ KÞ sin y1 cos y1k
2
1A1 � ð2mþ KÞ sin y2 cos y2k

2
1A2

�
X4
p¼3

m cos 2yp þ Kcos2 yp �
Ko2

0

k2
pðc

2
4 þ 2o2

0k
�2
p � V2

pÞ

 !
k2

pApy

¼
X2
p¼1

ð2m0 þ C3DpÞ sin y
0
p cos y

0
pk0

2
pA0p �

X6
p¼3

ðm0 cos 2y0p þ C3cos
2 y0pDpÞk

02
pA0p, ð29Þ

X4
p¼3

ðm0 þ C3DpÞ cos y
0
pk0

2
pA0p �

X6
p¼5

ðm0 þ C3DpÞ cos y
0
pk0

2
pA0p ¼ 0, (30)

½lþ ð2mþ KÞcos2 y1�k
2
1A1 þ ½lþ ð2mþ KÞcos2 y2�k

2
1A2 � ð2mþ KÞ

X4
p¼3

sin yp cos ypk2
pApy

¼
X2
p¼1

½l0 þ ð2m0 þ C3DpÞ cos
2 y0p�k

02
pA0p þ

X6
p¼3

ð2m0 þ C3DpÞ sin y
0
p cos y

0
pk0

2
pA0p, ð31Þ

X2
p¼1

sin y0pDpk0pA0p �
X6
p¼3

cos y0pDpk0pA0p ¼ 0, (32)

X4
p¼3

o2
0Apy

c24 þ 2o2
0k
�2
p � V 2

p

¼
X4
p¼3

Dpk0pA0p �
X6
p¼5

Dpk0pA0p, (33)

X2
p¼1

cos y0pDpk0pA0p þ
X6
p¼3

sin y0pDpk0pA0p ¼ 0. (34)
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Eqs. (26)–(34) obtained by utilizing Set-I of boundary conditions can be written in matrix form as

MX ¼ N, (35)

where M ¼ ½aij � is a 9� 9 matrix, N is a 9� 1 matrix, X ¼ ½Z1;Z2;Z3;Z
0
1;Z

0
2;Z

0
3;Z

0
4;Z

0
5;Z

0
6�

t, Z1 ¼

A2=A1;Z2 ¼ A3y=A1;Z3 ¼ A4y=A1 are the reflection coefficients and Z0r ¼ A0r=A1 ðr ¼ 1; 2; . . . ; 6Þ are the
transmission coefficients. The non-vanishing elements of the coefficient matrix M together with the elements
of the column matrix N are given in Appendix A. A non-homogeneous system of equations similar to
Eqs. (26)–(34) can be obtained by utilizing Set-II of boundary equations and they can be written in the matrix
form similar to Eq. (35). The non-zero elements of the matrix M obtained using Set-II which distinguish from
the elements of Set-I are given in Appendix B. Eq. (35) will enable us to determine the amplitude ratios of
various reflected and transmitted waves.

3. Limiting cases

1. If we assume that the half-space R1 is free from micropolarity then we will be left with the relevant
problem at an achiral–chiral interface. In this limiting case, we see that Bp ¼ 0. Also, the phase speed V 4

would be zero (see Ref. [20]). Thus, the wave propagating with phase speed V 4 will not appear in the medium
R1. Hence, after making the required substitutions, the Eqs. (26)–(34) will reduce to the equations that are
analogous to the equations obtained by Lakhtakia et al. [24].

2. If micropolar effect is removed from the half-space R1 and the chirality and microrotation effects are
removed from the half-space R2, then the problem will reduce to an elastic–elastic solid interface. In this case,
the roots of Eq. (10) are V 021 ¼ ðl

0
þ 2m0Þ=r0 and V 022 ¼ 0, while Eq. (11) have two non-zero equal roots, one of

them corresponds to a LCP wave and the other corresponds to a RCP wave, propagating with the same phase
speed, i.e.,

ffiffiffiffiffiffiffiffiffiffi
m0=r0

p
. Here, the boundary conditions will be corresponding to displacement and normal

component of force stress only. With these considerations, the matrix equation (35) obtained by utilizing both
the possible sets of boundary conditions exactly match with the corresponding equations obtained by
Miklowitz [28] for the relevant problem.

4. Numerical results and discussion

We have computed the square of phase speeds of all the coupled transverse plane waves existing in an elastic
chiral solid medium and the modulus of amplitude ratios of various reflected and transmitted waves using two
possible sets of boundary conditions, for a model having the following values of the relevant parameters:

For a micropolar elastic solid half-space (see Ref. [29])

l ¼ 75900� 106 N=m2; m ¼ 13500� 106 N=m2; K ¼ 149� 106 N=m2; r ¼ 2200 kg=m3,

J ¼ 0:00000196m2; a ¼ 0:01� 106 N; b ¼ 0:015� 106 N; g ¼ 0:0268� 106 N and o=o0 ¼ 10.

For an elastic chiral solid half-space (see Ref. [8])

l0 ¼ 500� 106 N=m2; m0 ¼ 300� 106 N=m2; J 0 ¼ 0:01m2; r0 ¼ 1200 kg=m3,

a0 ¼ 2:0� 106 N; b0 ¼ 4:0� 106 N; g0 ¼ 5:0� 106 N and C3 ¼ 20:0� 106 N=m.

Figs. 2 and 3 depict the variations of square of phase speeds V 02i ði ¼ 3; 4; 5; 6Þ of the coupled transverse waves
existing in the chiral elastic medium with the frequency ratio ðo=o0Þ lying in the range 0po=o0p5000. It can
be seen that in the initial range of frequency ratio, V 023 and V 024 increase, while V 025 and V 026 decrease with
increase in the frequency ratio. However, at higher values of the frequency ratio, the square of speeds of each
set of these coupled transverse waves approach toward certain constant values. The variations (increase or
decrease) of square of these phase speeds in the initial frequency range are very small from their constant
values at higher frequency.

In Fig. 4, we have plotted the modulus values of the reflection coefficients obtained by utilizing Set-I of
boundary conditions, as a function of the angle of incidence. The reflection coefficient Z1 begins with the value
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Fig. 5. The variations of modulus of transmission coefficients with angle of incidence of longitudinal wave propagating with phase speed

V1 (Curve I: Z01, Curve II: Z02, Curve III: Z03 � 10, Curve IV: Z04 � 10, Curve V: Z05 � 102, Curve VI: Z06 � 102).
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Fig. 6. The variations of modulus of reflection coefficient Z1 corresponding to the reflected wave propagating with phase speed V 1 with

angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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0:8587 near the normal incidence, then it decreases with increase in the angle of incidence y1 lying in the range
1	py1p54	, and attains the value 0:7371 at y1 ¼ 54	, thereafter, the reflection coefficient Z1 increases and
approaches to its maximum value, i.e., unity, at the grazing incidence. The reflection coefficients Z2 and Z3

increase with increase in the angle of incidence till y1 ¼ 48	, then their values decrease and approach to zero as
y1 approaches grazing incidence. We have plotted the reflection coefficient Z2 after magnifying its original
value by the factor 10.

In Fig. 5, we have shown the variations of modulus values of the transmission coefficients with the angle of
incidence. The transmission coefficients Z01 and Z02 begin with their maximum values, i.e., 0:1413 and 0:1176,
respectively, near the normal incidence and then they decrease with increase in the angle of incidence. The
transmission coefficients Z03 and Z04 begin with the value zero near the normal incidence, then both the
transmission coefficients increase slowly with increase in the angle of incidence till y1 ¼ 52	. Beyond y1 ¼ 52	;
these transmission coefficients decrease rapidly and approach to zero as y1 approaches 90	. The pattern of
transmission coefficient Z05 is almost similar to that of Z06 with respect to the angle of incidence. Both these
transmission coefficients begin with the value zero near the normal incidence, then both increase sharply with
increase in the angle of incidence and attain their respective maximum values at y1 ¼ 52	 and decrease
afterwards. We have plotted the transmission coefficients Z03; Z04; Z05 and Z06 after magnifying their original
values with the factors 10; 10; 102 and 102, respectively.
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Fig. 7. The variations of modulus of reflection coefficient Z2 corresponding to the reflected wave propagating with phase speed V3 with

angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 8. The variations of modulus of reflection coefficient Z3 corresponding to the reflected wave propagating with phase speed V4 with

angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 9. The variations of modulus of transmission coefficient Z01 corresponding to the transmitted wave propagating with phase speed V 01
with angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 10. The variations of modulus of transmission coefficient Z02 corresponding to the transmitted wave propagating with phase speed V 02
with angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 11. The variations of modulus of transmission coefficient Z03 corresponding to the transmitted wave propagating with phase speed V 03
with angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 12. The variations of modulus of transmission coefficient Z04 corresponding to the transmitted wave propagating with phase speed V 04
with angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).

A. Khurana, S.K. Tomar / Journal of Sound and Vibration 311 (2008) 973–990 983



ARTICLE IN PRESS

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

T
ra

n
s
m

is
s
io

n
 C

o
e
ff
ic

ie
n
t

Transmitted Wave

Angle of Incidence (in degrees)

0 2010 30 40 50 60 70 80 90

Fig. 13. The variations of modulus of transmission coefficient Z05 corresponding to the transmitted wave propagating with phase speed V 05
with angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 14. The variations of modulus of transmission coefficient Z06 corresponding to the transmitted wave propagating with phase speed V 06
with angle of incidence, using Set-I (solid curve) and Set-II (dashed curve).
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Fig. 15. The effect of hemitropic parameter ðC3Þ on the modulus of reflection coefficient Z1 with angle of incidence of longitudinal wave

propagating with phase speed V 1 (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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Fig. 16. The effect of hemitropic parameter ðC3Þ on the modulus of reflection coefficient Z2 with angle of incidence of longitudinal wave

propagating with phase speed V1 (Solid curve Z2 at C3 ¼ 20� 106 N/m, dashed curve Z2 at C3 ¼ 80� 106 N/m).
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Fig. 17. The effect of hemitropic parameter ðC3Þ on the modulus of reflection coefficient Z3 with angle of incidence of longitudinal wave

traveling with phase speed V1 (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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Fig. 18. The effect of hemitropic constant ðC3Þ on the modulus of transmission coefficient Z01 corresponding to the wave propagating with

phase speed V 01 when longitudinal wave is incident (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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Fig. 19. The effect of hemitropic constant ðC3Þ on the modulus of transmission coefficient Z02 corresponding to the wave propagating with

phase speed V 02 when longitudinal wave is incident (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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Fig. 20. The effect of hemitropic constant ðC3Þ on the modulus of transmission coefficient Z03 corresponding to the wave propagating with

phase speed V 03 when longitudinal wave is incident (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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Fig. 21. The effect of hemitropic constant ðC3Þ on the modulus of transmission coefficient Z04 corresponding to the wave propagating with

phase speed V 04 when longitudinal wave is incident (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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In Figs. 6–14, we have shown the comparison in the respective modulus values of reflection and
transmission coefficients obtained by using the Set-I and II of boundary conditions, against the angle of
incidence of longitudinal wave propagating with phase speed V1.

In Fig. 6, it can be seen that at each angle of incidence, the value of reflection coefficient Z1 obtained using
Set-I and II attains almost equal value.

In Figs. 7, 8, 10–12 the modulus values of the amplitude ratios Z2;Z3;Z
0
2;Z

0
3 and Z04 obtained using Set-II

are bigger in comparison to their values obtained using Set-I, at each angle of incidence.
In Figs. 9, 13 and 14, the absolute values of the amplitude ratios Z01;Z

0
5 and Z06 obtained using Set-I are

greater at each angle of incidence in comparison with those obtained by using Set-II.
Next, we have shown the variations of reflection and transmission coefficients obtained using Set-I of

boundary conditions with the angle of incidence of longitudinal displacement wave propagating with phase
speed V 1 at two different values of hemitropic constant namely, C3 ¼ 20� 106 N/m and 80� 106 N=m. It is
evident that the amplitude ratios depend on the angle of incidence as well as on the chirality parameter. The
nature of this dependence on the angle of incidence and the chirality parameter is however, different for
different reflected and transmitted waves.

In Fig. 15, we observed that at each angle of incidence lying in the range 1	py1p80	, the value of reflection
coefficient Z1 corresponding to the wave propagating with phase speed V 1 increases with increase in the value
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Fig. 22. The effect of hemitropic constant ðC3Þ on the modulus of transmission coefficient Z05 corresponding to the wave propagating with

phase speed V 05 when longitudinal wave is incident (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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Fig. 23. The effect of hemitropic constant ðC3Þ on the modulus of transmission coefficient Z06 corresponding to the wave propagating with

phase speed V 06 when longitudinal wave is incident (Solid curve at C3 ¼ 20� 106 N/m, dashed curve at C3 ¼ 80� 106 N/m).
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of C3: Beyond y1 ¼ 80	, the amplitude ratio Z1 has almost equal values at the two different mentioned values
of C3.

In Figs. 16–18, 20 and 21, the modulus values of the amplitude ratios Z2; Z3; Z01; Z03 and Z04 increase with
increase in the value of C3 at each angle of incidence.

In Figs. 19, 22 and 23, we have seen that at each angle of incidence, the modulus values of the amplitude
ratios Z02, Z05 and Z06 decrease with increase in the value of C3.

It can be noticed from Figs. 15–23 that the amplitude ratios of various reflected and transmitted waves of an
incident longitudinal wave propagating with phase speed V1 are significantly influenced by the hemitropic
constant ðC3Þ.

5. Conclusions

In this paper, we have presented the reflection and transmission phenomena of an incident longitudinal
plane wave propagating through the micropolar elastic solid half-space towards the plane interface between
micropolar/chiral elastic solids. We conclude that:

1. At normal incidence, the reflection and transmission of only longitudinal waves take place and no
coupled transverse wave is found to reflect or transmit.

2. At grazing incidence, no reflection or transmission phenomena take place and the same wave propagates
along the interface.

3. Amplitude ratios of various reflected and transmitted waves depend upon the angle of incidence and the
chirality parameter.

4. The variations in the chirality parameter ðC3Þ affect significantly various reflection and transmission
coefficients.
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Appendix A

The non-zero coefficients of the matrix M of Eq. (35) obtained by utilizing Set-I are given as

a11 ¼ sin y1; a12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v231 sin

2 y1
q

=v31; a13 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v241 sin

2 y1
q

=v41; a1t ¼ � sin y1,

a1p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02p1 sin

2 y1
q

=V 0p1; a1s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02s1 sin

2 y1
q

=V 0s1; a2p ¼ 1=V 0p1; a2s ¼ �1=V 0s1,

a31 ¼ cos y1; a32 ¼ a33 ¼ � sin y1; a3t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02t1 sin

2 y1
q

=V 0t1; a3p ¼ a3s ¼ sin y1,

a44 ¼ sin y1; a45 ¼ D2 sin y1=D1; a4p ¼ �Dp�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02p1 sin

2 y1
q

=ðD1V 0p1Þ,

a4s ¼ �Ds�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02s1 sin

2 y1
q

=ðD1V
0
s1Þ; a52 ¼ S1k3=ðD1v31Þ; a53 ¼ S2k4=ðD1v41Þ,

a5p ¼ �Dp�3=ðD1V
0
p1Þ; a5s ¼ Ds�3=ðD1V

0
s1Þ; a64 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v0211 sin

2y1
q

=v011,

a65 ¼ D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v0221 sin

2y1
q

=ðD1v
0
21Þ; a6p ¼ Dp�3 sin y1=D1; a6s ¼ Ds�3 sin y1=D1,
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a71 ¼ sin y1 cos y1; a72 ¼ ðmþ K � KS1Þ=ðB1v
2
31Þ � sin2y1,

a73 ¼ ðmþ K � KS2Þ=ðB1v
2
41Þ � sin2y1; a7t ¼ ð2m0 þ C3Dt�3Þ sin y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02t1 sin

2y1
q

=ðB1V 0t1Þ,

a7p ¼ �½m0ð1� 2V 02p1 sin
2y1Þ þ C3Dp�3ð1� V 02p1 sin

2y1Þ�=ðB1V 02p1Þ,

a7s ¼ �½m0ð1� 2V 02s1 sin
2y1Þ þ C3Ds�3ð1� V 02s1 sin

2y1Þ�=ðB1V 02s1Þ,

a8p ¼ ðm0 þ C3Dp�3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02p1 sin

2y1
q

=ðmV 02p1Þ,

a8s ¼ �ðm0 þ C3Ds�3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02s1 sin

2y1
q

=ðmV 02s1Þ; a91 ¼ 1,

a92 ¼ �B1 sin y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v231 sin

2y1
q

=ðB2v31Þ; a93 ¼ �B1 sin y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v241 sin

2y1
q

=ðB2v41Þ,

a9t ¼ �½l
0
þ ð2m0 þ C3Dt�3Þð1� V 02t1 sin

2y1Þ�=ðB2V
02
t1Þ,

a9p ¼ �ð2m0 þ C3Dp�3Þ sin y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02p1 sin

2y1
q

=ðB2V
0
p1Þ,

a9s ¼ �ð2m0 þ C3Ds�3Þ sin y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02s1 sin

2y1
q

=ðB2V
0
s1Þ,

where B1 ¼ 2mþ K ;B2 ¼ lþ B1cos
2 y1;S1 ¼ o2

0=ðc
2
4k

2
3 þ 2o2

0 � o2Þ,

S2 ¼ o2
0=ðc

2
4k2

4 þ 2o2
0 � o2Þ; t ¼ 4; 5; p ¼ 6; 7; s ¼ 8; 9; v31 ¼

V 3

V 1
; v41 ¼

V4

V1
,

v0r1 ¼
V 0r
V1
ðr ¼ 1; 2; . . . ; 6Þ; V 041 ¼ v011; V 051 ¼ v021; V 061 ¼ v031; V 071 ¼ v041; V 081 ¼ v051,

V 091 ¼ v061; and the column matrix ½N� ¼ ½� sin y1; 0; cos y1; 0; 0; 0; sin y1 cos y1; 0;�1�t.

Appendix B

The non-zero elements of the matrix M of Eq. (35) obtained by using Set-II of boundary conditions, that
are different from the elements obtained using Set-I are given as follows:

a4t ¼ ððb
0
þ g0ÞDt�3 þ C3Þ sin y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02t1 sin

2y1
q

=ðV 0t1C3Þ,

a4p ¼ ððb
0
þ g0ÞDp�3 þ C3ÞV

02
p1 sin

2y1 � g0Dp�3 þ C3 �
C3Dp�3

k0p�3

 !" #,
ðV 02p1C3Þ,

a4s ¼ ððb
0
þ g0ÞDs�3 þ C3ÞV

02
s1 sin

2y1 � g0Ds�3 þ C3 þ
C3Ds�3

k0s�3

� �	 
�
ðV 02s1C3Þ,

a52 ¼ gS1k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v231 sin

2y1
q

=ðv331C3Þ; a53 ¼ gS2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v241 sin

2y1
q

=ðv341C3Þ,

a54 ¼ D1 sin y1=k1; a55 ¼ D2 sin y1=k1; a5p ¼ g0Dp�3 þ C3 �
C3Dp�3

k0p�3

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02p1 sin

2y1
q

=ðV 02p1C3Þ,
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a5s ¼ � g0Ds�3 þ C3 þ
C3Ds�3

k0s�3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02s1 sin

2y1
q

=ðV 02s1C3Þ,

a6t ¼ ½a0Dt�3 þ ððb
0
þ g0ÞDt�3 þ C3Þð1� V 02t1 sin

2y1Þ�=ðV 02t1C3Þ,

a6p ¼ ððb
0
þ g0ÞDp�3 þ C3Þ sin y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02p1 sin

2y1
q

=ðV 0p1C3Þ,

a6s ¼ ððb
0
þ g0ÞDs�3 þ C3Þ sin y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 02s1 sin

2y1
q

=ðV 0s1C3Þ,

where v31; v41;V
0
t1;V

0
p1;V

0
s1;S1;S2 and column matrix N same as defined in Appendix A.
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